

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

NEXTGEN NAVY ELEARNING TRACKING

by

William E. Miller

December 2014

Thesis Advisor: Man-Tak Shing
Co-Advisor: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
NEXTGEN NAVY ELEARNING TRACKING

5. FUNDING NUMBERS

6. AUTHOR(S) William E. Miller
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200words)

The Navy’s eLearning (NeL) computer-based learning system relies on a Learning Management System (LMS) for
content delivery and tracking learning information. One major obstacle with NeL’s current LMS implementation is
that tracking of learning can only be done while a user is on a desktop computer using an Internet browser to connect
to the LMS software. However, not all learning takes place within an Internet browser on a desktop computer. The
Experience-API (xAPI), also known as Tin Can API and SCORM 2.0, is a standard maintained by Advanced
Distributed Learning (ADL) that decouples the tracking of learning information from the content delivery. Any piece
of software implementing the xAPI standard running on any networked device can track learning activity and store
that data inside of a Learning Record Store (LRS). A prototype system was developed in a virtual environment to
showcase the use of the xAPI/LRS to track quiz data, and the quiz data could then be synced from the LRS to the
LMS. The prototype showed that xAPI, along with its LRS, can overcome the NeL’s AtlasPro LMS limitation of only
tracking learning from a user’s desktop computer using an Internet browser.

14. SUBJECT TERMS
Experience API, xAPI, Tin Can API, SCORM, LRS, LMS, eLearning, NeL

15. NUMBER OF
PAGES

65
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

NEXTGEN NAVY ELEARNING TRACKING

William E. Miller
Civilian, Department of Defence, Defense Manpower Data Center

B.S., California State University–Monterey Bay, May 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2014

Author: William E. Miller

Approved by: Man-Tak Shing
Thesis Advisor

Arijit Das
Co-Advisor

Peter J. Denning
Chair, Department of CS

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The Navy’s eLearning (NeL) computer-based learning system relies on a Learning

Management System (LMS) for content delivery and tracking learning information. One

major obstacle with NeL’s current LMS implementation is that tracking of learning can

only be done while a user is on a desktop computer using an Internet browser to connect

to the LMS software. However, not all learning takes place within an Internet browser on

a desktop computer. The Experience-API (xAPI), also known as Tin Can API and

SCORM 2.0, is a standard maintained by Advanced Distributed Learning (ADL) that

decouples the tracking of learning information from the content delivery. Any piece of

software implementing the xAPI standard running on any networked device can track

learning activity and store that data inside of a Learning Record Store (LRS). A prototype

system was developed in a virtual environment to showcase the use of the xAPI/LRS to

track quiz data, and the quiz data could then be synced from the LRS to the LMS. The

prototype showed that xAPI, along with its LRS, can overcome the NeL’s AtlasPro LMS

limitation of only tracking learning from a user’s desktop computer using an Internet

browser.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...1
B. THESIS OUTLINE ..2

II. BACKGROUND ..3

III. PROTOTYPE SYSTEM DESIGN ...9
A. STAKEHOLDERS ..9
B. USE CASES ..9
C. COMPONENTS ...13
D. ARCHITECTURE ...16
E. SEQUENCE DIAGRAMS ..16

1. Student User Quiz Submission ...16
2. Administrator User Data Sync ...17
3. Teacher User View Grade ...18

F. CLASS DIAGRAMS ...19
G. XAPI/LRS EXTENSIONS ..22

IV. PROTOTYPE SYSTEM IMPLEMENTATION ..25
A. STUDENT USER AND LRS DATA INSERT ..28
B. ADMINISTRATOR USER AND DATA SYNC FUNCTION34
C. TEACHER USER AND LMS VIEW GRADE ...40

V. CONCLUSIONS AND FUTURE RESEARCH ..41
A. CONCLUSION ..41
B. FUTURE RESEARCH ..42

APPENDIX. XAPI/LRS STATEMENT IN JSON FORMAT ...43

LIST OF REFERENCES ..45

INITIAL DISTRIBUTION LIST ...47

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

LIST OF FIGURES

Figure 1. Current user to NeL LMS interaction. ...3
Figure 2. Example implementation of the xAPI LRS tracking decoupled from

content delivery. ...5
Figure 3. JSON array of car objects. ...6
Figure 4. xAPI/LRS statement structure (Advanced Distributed Learning, 2014).7
Figure 5. Prototype system use case diagram..10
Figure 6. Prototype system component diagram. ..14
Figure 7. Client server three-tiered architecture of prototype system.16
Figure 8. Student quiz submission sequence diagram. ..17
Figure 9. Data Sync of LRS to LMS sequence diagram. ..18
Figure 10. Teacher viewing student’s quiz score sequence diagram.19
Figure 11. Quiz website class diagram. ...20
Figure 12. Data Sync website class diagram. ..21
Figure 13. xAPI/LRS statement Extension element for quiz data tracking.22
Figure 14. Prototype system implementation diagram. ...26
Figure 15. Rustici Software’s Basic Run-Time Calls SCORM package quiz (Rustici

Software). ...28
Figure 16. Quiz website quiz questions...29
Figure 17. Quiz website calculating Student score. ..30
Figure 18. Quiz website building and inserting LRS statement.31
Figure 19. Quiz website testing form for inserting data into LRS.32
Figure 20. JSON statement in the LRS. ..33
Figure 21. Data Sync website. ...34
Figure 22. Data Sync function pulling data from LRS. ...35
Figure 23. Data Sync function pulling data from LRS detail. ...35
Figure 24. Data Sync function extracting, transforming, and setting default values.36
Figure 25. Data Sync function SCO Moodle LMS java objects populated.37
Figure 26. Data Sync function SCO inserted into Moodle database call.38
Figure 27. Data Sync function Moodle LMS grade java objects populated.39
Figure 28. Data Sync function Moodle grade history java objects populated.39
Figure 29. Teacher viewing the Student’s quiz grade in Moodle LMS before Data

Sync function run. ..40
Figure 30. Teacher viewing the Student’s quiz grade in Moodle LMS after Data Sync

function run. ...40

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. xAPI/LRS statement elements description (Advanced Distributed
Learning, 2014). ...8

Table 2. Use Case 1 – Student – Access Quiz Questions. ...11
Table 3. Use Case 2 – Student – Submit Quiz Answers. ...11
Table 4. Use Case 3 – Administrator – Access Data Sync. ...12
Table 5. Use Case 4 – Administrator – Start Data Sync. ...12
Table 6. Use Case 5 – Teacher – Access Quiz Scores. ..13
Table 7. Prototype system component descriptions and technologies.15
Table 8. xAPI/LRS statement Extension elements descriptions.23
Table 9. The devices used to access the prototype system. ...27

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF ACRONYMS AND ABBREVIATIONS

ADL Advanced Distributed Learning

DOD Department of Defense

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identifier

JDBC Java Database Connection

JSON JavaScript Object Notation

LMS Learning Management System

LRS Learning Record Store

NeL Navy eLearning

OS Operating System

SCO Shareable Content Object

SCORM Shareable Content Object Reference Model

UC Use Case

URL Uniform Resource Locator

VPN Virtual Private Network

xAPI Experience Application Public Interface

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

I would like to thank my entire family for their support and encouragement during

my graduate studies. Without them, this endeavor would not have been possible.

Thanks to my advisors Professor Man-Tak Shing and Professor Arijit Das for

obtaining a research grant and sponsor for this thesis, for help with scoping the thesis, for

their feedback in every phase, and for general guidance.

Thanks to Virgil Hart and the folks from NETC for sponsoring the research for

this thesis.

Thanks to Jason Haag and Andy Johnson from ADL for lending their expertise on

SCORM and xAPI, coming out to meet with us at NPS, and discussing various directions

the current and future research could take.

Thanks to Louis Algaze for his support and advice on the Sakai LMS that helped

shape the direction of the thesis.

Thanks to Erik Lowney for his extensive networking knowledge and setting up

the virtual environment that the prototype system resides in.

Thanks to my supervisors Ron Forbes and Michelle Rudolph at DMDC for their

interest in my career progression, their approval to get a master’s at NPS, and allowing

me flexible work times for courses and thesis.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

The current Learning Management System (LMS) designs used for eLearning

content delivery and data tracking are very centralized and high in complexity. This

makes it time consuming and expensive to evolve them so that they can take advantage of

emerging technologies.

Navy eLearning (NeL) uses a LMS called AtlasPro that does not have the

capability to work from mobile device browsers and is limited in the way in tracking

learning data. The Hypertext Markup Language (HTML) content that AtlasPro produces

contains the HTML iframe tag, which is not supported by many mobile device browsers,

causing the content to not behave and/or display correctly (Mobify, 2012). Without

support for mobile devices, users of the AtlasPro system are limited to using desktop

computer browsers. Not all learning takes place at a desktop computer, nor on a mobile

device for that matter, but enabling the system to support mobile devices will broaden the

scope of what learning can take place and what data about learning can be tracked.

There will always be a need of leveraging legacy software and data structures

(legacy system) with modern software and data structures (modern system). Generally

this need comes from trying to fulfill new requirements while controlling costs. Creating

a modern system that leverages the legacy system can be more cost effective than a)

creating a modern system that fulfils all of the legacy systems requirements and new

requirements or b) modifying the legacy system to include the new requirements (Hyland

Software, 2009).

A. THESIS OBJECTIVE

The technology to support the next generation of the NeL LMS, and LMSs in

general, has not been solidified. This thesis provides a proof of concept study to identify

the capabilities and issues of the Experience API (xAPI) as one potential technology.

Specifically this thesis will look at how the xAPI, with its Learning Record Store (LRS),

can help overcome the limitations of data tracking within a LMS. This is done using a

 1

scenario based analysis to design a high level software model along with an

implementation of a prototype system.

B. THESIS OUTLINE

Chapter II presents several topics to help better understand the problem, the work

done, and the results for this thesis. The topics included are: the NeL, a general overview

of LMSs, the Shareable Content Object Reference Model (SCORM) standard maintained

by Advanced Distributed Learning (ADL), and details on the xAPI along with its use of

the LRS software and JavaScript Object Notation (JSON) content format.

The prototype’s design is discussed in Chapter III. It covers who the stakeholders

of the system are, what use cases are needed to support the users, the various components

that make up the system, how the components connect to one another, detailed sequence

diagrams, and the system’s class diagrams.

In Chapter IV, the prototype implementation is demonstrated to verify the

prototype design. It discusses the environment that the prototype system is hosted in and

a step by step demonstration with screen shots and details.

Lastly, Chapter V summarizes the research and suggests follow-on research that

should be done but is outside the scope of this thesis.

 2

II. BACKGROUND

The NeL is a system that “delivers computer-based learning designed to enhance

professional and personal growth of Navy military members” (Navy eLearning, 2010). A

core piece of NeL, as shown in Figure 1, is the LMS AtlasPro (Sea Warrior Program and

Naval Education and Training Command Public Affairs, 2013).

Figure 1. Current user to NeL LMS interaction.

A LMS is a software framework that consolidates every piece of the learning

process into one system (Szabo & Flesher, 2002). Generally, a LMS will provide the

following: content structure, security, user registration, content delivery, interaction/

navigation, assessment, tracking, reporting, record keeping, facilitating reuse,

personalization, integration, and administration (Berking & Gallagher, 2013). Some

examples of LMSs are AtlasPro, Sakai, Blackboard, and Moodle.

Typically a LMS supports content that implements the SCORM standard that is

maintained by ADL. SCORM “defines the interrelationship of course components, data

 3

models, and protocols so that learning content objects are sharable across systems that

conform with the same model” (Berking & Gallagher, 2013, p. 34). The benefit of

content built using SCORM is that it is not dependant on any one LMS and can be reused

as a separate module.

There are several versions of the SCORM standard. This thesis focuses on

SCORM 2004 3rd Edition, which has three major sub-standards: Content Aggregation

Model, Run-Time Environment, and Sequencing and Navigation (Rustici, 2009). The

Content Aggregation Model specifies how the content has to be structured and packaged

and is read in by a LMS. The Run-Time Environment specifies “how [the] content should

behave once it has been launched by the LMS.” The Sequencing and Navigation specifies

the users’ movement through the content. With these three pieces it is possible to create a

SCORM package as simple as a one page quiz or as complex as a war game simulation.

The lowest level of a piece of SCORM content is called an Asset (Rustici, 2009).

Some examples of Assets are: text, images, video, and sound. An Asset is always a static

piece of content. One or more Assets can be grouped into a Shareable Content Object

(SCO) that “should represent the smallest unit of learning that the LMS should track.” A

SCO can communicate with the LMS but an Asset on its own cannot.

One major obstacle with NeL’s current LMS implementation is how users have to

interact with the LMS. Tracking of learning can only be done while a user is on a desktop

computer using an Internet browser to connect to the LMS software (Poltrack, Haag,

Hruska, & Johnson, 2012, p. 4). However, not all learning takes place within an Internet

browser on a desktop computer.

ADL maintains the xAPI standard that is also known as Tin Can API and

SCORM 2.0 (Advanced Distributed Learning). The main driving factor for the creation

of xAPI is that SCORM is only able to track learning within a LMS but not all learning

takes place within a LMS (Tin Can API). The xAPI is the “next generation of SCORM

that allows e-learning to use modern technologies in an interoperable way” (Whitaker,

2012). It has been “designed to support existing SCORM use cases as well as enabling

use cases that were difficult to meet with SCORM, such as mobile training and content

 4

that is accessed outside of a web browser” (Advanced Distributed Learning, 2013). The

xAPI decouples the tracking of learning information from the content delivery as shown

in Figure 2.

Figure 2. Example implementation of the xAPI LRS tracking decoupled from

content delivery.

Since the xAPI is a standard, like SCORM, it can be implemented by any piece of

software as a standalone system or as part of a larger system. In the next few years LMSs

will probably start to incorporate xAPI into them similar to how they did with SCORM.

Any piece of software implementing the xAPI standard running on any networked device

can track learning activity and store that data inside of a LRS (Brusino, 2012).

A LRS is a key piece of the xAPI standard. It is the system that stores the learning

activity information, referred to as a statement. However, it does not host or provide the

content to the user (Experience API, 2014). Depending on the configuration of the LMS,

the LRS could either be an internal or external component of the LMS (Brusino, 2012).

The communication to and from the LRS is done over a network using the Hypertext

Transfer Protocol (HTTP) with the content being JSON (Experience API, 2014).

 5

JSON is a format for text that is easy to read by humans and able to be parsed by

computers (Bray, 2014). See Figure 3 for example JSON of the car make, model, and

year data. There are two structures that can be used together in JSON: object and array.

An object contains one or more keys, which is a string of text (surrounded by double

quotes), and each key relates to a value. An array is a list of values. The value for both

the object key(s) and arrays can be one of the following: string of text (surrounded by

double quotes), a number, another object, another array, a boolean (true or false), or a

null (empty).

Figure 3. JSON array of car objects.

At a high level, a single statement stored in the LRS contains several different

pieces of information (Experience API, 2014). For the purpose of this thesis, there are

three top level data elements about the learning (Actor, Verb, and Object) and five top

level data elements about the statement itself (Authority, Timestamp, Stored, Version,

and ID). See Figure 4 for the xAPI/LRS statement structure, Table 1 for a description of

each element, and the appendix for a sample JSON statement. (Note: This does not cover

the full xAPI/LRS elements but only a sub-set of elements as relevant to this thesis. The

 6

full list and explanation of xAPI/LRS elements can be found here: https://github.com/

adlnet/xAPI-Spec/blob/master/xAPI.md.)

Figure 4. xAPI/LRS statement structure (Advanced Distributed Learning, 2014).

 7

Element Name Element Description

statement The xAPI data is stored in this.
statement.id A unique ID for this statement in the LRS.
statement.verb The action being done by the Actor.
statement.verb.id The full ID of the verb.
statement.verb.display The short ID for displaying purposes.
statement.verb.display.en-US The U.S. English short ID for displaying

purposes.
statement.actor The user doing the learning.
statement.actor.mbox The email of the user.
statement.actor.name The name of the user.
statement.actor.objectType The type of object the user is.
statement.version The xAPI version used for this statement.
statement.stored The day and time this statement was stored in

the LRS.
statement.timestamp The day and time the learning took place.
statement.authority The account that stored this statement in the

LRS. This is generally the account of the
system interacting with the LRS. It does not
have to be the Actor’s account although it
could be.

statement.authority.mbox The email of the authority account.
statement.authority.name The name of the authority account.
statement.authority.objectType The type of object the authority account is.
statement.object The learning that took place by the Actor.
statement.object.id The ID of the learning being tracked.
statement.object.definition Additional data about the object.
statement.object.definition.name The name of the additional object data.
statement.object.definition.name.en-US The U.S. English name for displaying

purposes.
statement.object.definition.extensions Allows adding customized data elements for

the project. This is a key feature used in this
thesis and is covered in more detail in the
XAPI/LRS Extensions section.

statement.object.objectType The type of object the object is.

Table 1. xAPI/LRS statement elements description (Advanced Distributed
Learning, 2014).

 8

III. PROTOTYPE SYSTEM DESIGN

The goal of this prototype system design is to provide a high level concept for

getting data elements that are stored in a LRS into a LMS. It does not cover the security

aspects required for a production Department of Defense (DOD) system. For this study

we chose to show this proof of concept using quiz information. The data elements of

interest to move from the LRS to the LMS are: a few of the SCORM SCO data tracking

elements, the student ID who took the quiz, and the course ID the quiz is in.

A. STAKEHOLDERS

There are three groups of stakeholders for the prototype system: Students,

Administrators, and Teachers. In a future prototype the Administrator role, as it relates to

the prototype in this thesis, could be replaced with automation/software.

• Student: Needs to be able to access quiz questions and submit quiz
answers.

• Administrator: Needs to be able to initiate the copy of data from the LRS
to the LMS.

• Teacher: Needs to be able to access quiz scores for Students in the LMS.

B. USE CASES

The use cases in Figure 5 are based on the stakeholders and their needs. The

details of each use case (UC) can be found in Table 2 through Table 6. As this is a proof

of concept prototype the exception/error use cases are not handled.

 9

Figure 5. Prototype system use case diagram.

There are a few assumptions that apply to all the use cases, UC1-UC5. First is that

the LMS has been set up with a course and that the course has been set up with a

SCORM quiz content package. Second is that the LMS has been set up with the Student

user and Teacher user and they have been enrolled in the course as a student roll and

teacher roll, respectfully. Please note that LMS’s behavior (code base) is not being

modified in anyway so UC5 would be the same on any LMS. The UC1-UC4 are the new

pieces for the prototype system.

Decoupling the data tracking and content hosting, that a LMS typically provides,

allows for greater system flexibility. The decoupling can be done by having the content

hosted by a server and the data tracked in the LRS. The website in this prototype is the

Quiz website since this prototype focuses on quiz score data. This is shown in UC1 and

UC2.

 10

UC1 Student – Access Quiz Questions
Description Steps taken for a Student to bring up the Quiz website that

contains the quiz questions.
Assumptions • Student has not attempted/completed the quiz.

• Student is using either a mobile device or
workstation (device) that has an Internet browser
installed on it.

Base Course of Action 1. Student opens the Internet browser on their device.
2. Device displays Internet browser.
3. Student inputs the Quiz website URL into the

Internet browser.
4. Device displays Quiz website content (quiz

questions) via Internet browser.

Table 2. Use Case 1 – Student – Access Quiz Questions.

UC2 Student – Submit Quiz Answers
Description Steps taken for a Student to submit the quiz answers on the

Quiz website.
Assumptions • Student has just completed UC1.

• Student is using either a mobile device or
workstation (device) that has an Internet browser
installed on it.

Base Course of Action 1. Student selects answers to each quiz question
displayed in Internet browser.

2. Device displays selected answers for each quiz
question via Internet browser.

3. Student submits quiz answers in Internet browser.
4. Device displays submission success via Internet

browser.

Table 3. Use Case 2 – Student – Submit Quiz Answers.

 11

UC3 Administrator – Access Data Sync
Description Steps taken for an Administrator to bring up the Data Sync

website that contains the Data Sync functions.
Assumptions • Student has just completed UC2.

• Data Sync has not been run.
• Administrator is using either a mobile device or

workstation (device) that has an Internet browser
installed on it.

Base Course of Action 1. Administrator opens the Internet browser on their
device.

2. Device displays Internet browser.
3. Administrator inputs the Data Sync website URL

into the Internet browser.
4. Device displays Data Sync website content (Data

Sync functions) via Internet browser.

Table 4. Use Case 3 – Administrator – Access Data Sync.

UC4 Administrator – Start Data Sync
Description Steps taken for an Administrator to start the Data Sync

function from the LRS to the LMS on the Data Sync
website.

Assumptions • Administrator has just completed UC3.
• Administrator is using either a mobile device or

workstation (device) that has an Internet browser
installed on it.

Base Course of Action 1. Administrator selects the Start Data Sync button in
Internet browser.

2. Device displays Data Sync ran successfully in
Internet browser.

Table 5. Use Case 4 – Administrator – Start Data Sync.

 12

UC5 Teacher – Access Quiz Scores
Description Steps taken for a Teacher to view the Student’s quiz score

data in the LMS.
Assumptions • Administrator has just completed UC4.

• Teacher is using a workstation that has an Internet
browser installed on it.

Base Course of Action 1. Teacher opens the Internet browser on their
workstation.

2. Workstation displays Internet browser.
3. Teacher inputs the LMS URL into the Internet

browser.
4. Workstation displays LMS login screen via Internet

browser.
5. Teacher inputs their username and password into

the LMS logins fields and clicks the Login button in
the Internet browser.

6. Workstation displays login successful by showing
the LMS home page via the Internet browser.

7. Teacher selects the course they are enrolled in as
the teacher role in the Internet browser.

8. Workstation displays the course home page via the
Internet browser.

9. Teacher selects the grade book for the course in the
Internet browser.

10. Workstation displays the grades for all students
enrolled in the course via the Internet browser.

Table 6. Use Case 5 – Teacher – Access Quiz Scores.

C. COMPONENTS

Figure 6 shows all of the prototype system components, the users of the system,

and how they relate to one another. This study is conducted within NPS’s firewall in a

virtualized environment.

 13

Figure 6. Prototype system component diagram.

In Table 7 the description and technology for each component is listed. The Quiz

website, LRS, Data Sync website, and LMS can all reside on separate virtualized servers

to show that they are separate components. However, they could all just as easily be put

on a single server.

 14

Component Description Technology
Student Device Student uses this to access

the Quiz website.
This can be any device that has
an Internet browser and
network capability such as a
desktop computer or
smartphone.

Quiz website Hosts the quiz that includes
the content such as: HTML,
CSS, JavaScript, etc. When
the quiz data is submitted,
the tracking data is sent to
the LRS.

Server OS:
Ubuntu 12.04.4 (64 bit)

website Language:
Java 6.31

Hosting Software:
Apache Tomcat 7.0.26

LRS Tracks the resulting quiz
data.

Server OS:
Ubuntu 12.04.4 (64 bit)

LRS Software:
ADL LRS 1.0.0

Administrator Device Administrator uses this to
access the Data Sync
website.

This can be any device that has
an Internet browser and
network capability such as a
desktop computer or
smartphone.

Data Sync website Hosts the Data Sync function
that pulls the quiz data from
the LRS, transforms it to
match the LMS data format,
and then pushes the
transformed data into the
LMS.

Server OS:
Ubuntu 12.04.4 (64 bit)

website Language:
Java 6.31

Hosting Software:
Apache Tomcat 7.0.26

LMS End point for the Student’s
quiz score data and where the
Teacher can view the
Student’s quiz score.

Server OS:
Ubuntu 12.04.4 (64 bit)

LMS Software:
Moodle 2.7

Hosting Software:
Apache 2.4.9

Teacher Workstation Teacher uses this to access
the LMS.

This can be any desktop
computer that has an Internet
browser and network capability.

Table 7. Prototype system component descriptions and technologies.

 15

D. ARCHITECTURE

The prototype system uses a client server three-tiered architecture as shown in

Figure 7. The tiers are presentation, logic, and data/storage.

Figure 7. Client server three-tiered architecture of prototype system.

E. SEQUENCE DIAGRAMS

At a high level, there are three stages for the prototype system and each stage is

triggered by a user. In the first stage, shown in Figure 8, is the Student user submits their

quiz response to the Quiz website that in turn places the data inside the LRS. The second

stage, shown in Figure 9, is the Administrator user runs the Data Sync program to copy

the data from the LRS to the LMS. For the third stage, shown in Figure 10, the Teacher

user access the LMS to view the Student’s quiz grade.

1. Student User Quiz Submission

First the Student user using the Student Device’s Internet browser accesses the

HTML quiz content (HTTP get) on the Quiz website (java servlet). Next the Student

Device, via the Student user, submits the quiz response (HTTP Post) to the Quiz website.

The Quiz website calculates the quiz score and then constructs the JSON statement to be

inserted into the LRS. This JSON statement includes the Extensions data elements that

are covered in more detail in the XAPI/LRS Extensions section. Lastly the Quiz website

pushes the JSON statement into the LRS (HTTP post). The LRS adds a few additional

elements to the statement once it is stored (see the appendix for a sample).

 16

Figure 8. Student quiz submission sequence diagram.

2. Administrator User Data Sync

First the Administrator user using the Administrators Device’s Internet browser

accesses (HTTP get) the Data Sync website (java servlet). Next the Administrator

Device, via the Administrator user, submits the request (HTTP post) to start the Data

Sync process. The Data Sync website then pulls the quiz score and other tracking data

(HTTP get) for the Student user as a JSON statement from the LRS (see the appendix for

a sample), transforms the data into the LMS, and pushes the quiz tracking data (JDBC

inserts) into the LMS.

 17

Figure 9. Data Sync of LRS to LMS sequence diagram.

3. Teacher User View Grade

The Teacher user using the Teacher Workstation’s Internet browser logs into the

LMS, selects the course, and opens the grade book to view the Student’s quiz grade.

 18

Figure 10. Teacher viewing student’s quiz score sequence diagram.

F. CLASS DIAGRAMS

There are four separate server side software components that make up the

prototype system: Quiz website, LRS, Data Sync website, and LMS. Of those, the LRS

and LMS software existed before this thesis. The Quiz website and Data Sync website

were built for this thesis and their class diagrams are shown in Figure 11 and Figure 12,

respectfully.

Each HTTP request made to the Quiz website has a specific action name

associated with it and goes through the MainFilter and then into the HomeController.

When the HTTP request is just for the list of quiz questions, the HomeController directs

the Student to the quiz question page. When the HTTP request is submitting the quiz

answers, the HomeController calculates the quiz score, builds the InsertFormBean object,

and then uses the LrsService to put the data into the LRS.

 19

Figure 11. Quiz website class diagram.

The Data Sync website is designed with the ability to interact with both the LRS

and LMS at various stages of the process to make development easier. However, since

the goal of the Data Sync website is to sync the data from the LRS to the LMS, that is the

process discussed here. Each HTTP request made to it has a specific action name

associated with it and goes through the MainFilter. The first request to access the Data

Sync website goes to the HomeController and redirects the Administrator to the main

Data Sync website page that contains all the functions. The Administrator executes the

Data Sync function from this page that goes to the DataSyncController that calls the

DataSyncService. The DataSyncService calls the LrsService to pull the Student’s quiz

tracking data from the LRS, it transforms the data into the LMS format, and then calls the

LmsService to insert the data into the LMS.

 20

Figure 12. Data Sync website class diagram.

 21

G. XAPI/LRS EXTENSIONS

The structure of a statement as used in this thesis can be found in Figure 4 in

Chapter II – Background section. A feature to note about the

statement.object.definition.extensions element is the ability to add customized data sub-

elements within it known as Extensions. The Extension data element is critical to this

thesis as it allows the statement to contain the quiz tracking data elements. These are the

elements that are copied from the LRS into the LMS by the Data Sync function. See

Figure 13 for a view of just the Extension data element structure, Table 8 for an

explanation of each Extension data element that is being added for use in the prototype

system, and the appendix for a sample full LRS JSON statement.

Figure 13. xAPI/LRS statement Extension element for quiz data tracking.

 22

Element Name Element Description
attempt The quiz attempt this is for. Attempt 1 would be the first time the

Student has taken the quiz.
courseId The LMS course ID that the quiz is in.
userId The LMS user ID of the Student that took the quiz.
moodleItemId The LMS ID for the item in the Moodle LMS. An item could be

anything from an assignment to a resource posting. In this case the ID
is referring to the specific quiz in the LMS.

score The score the Student received for the quiz.
scormId The SCORM ID for the SCORM package that was uploaded into the

LMS.
scormScoId Within the SCORM package, the specific SCO ID this is for. In this

case, it is the referring to the quiz SCO in the SCORM package.

Table 8. xAPI/LRS statement Extension elements descriptions.

 23

THIS PAGE INTENTIONALLY LEFT BLANK

 24

IV. PROTOTYPE SYSTEM IMPLEMENTATION

The prototype system is implemented in a virtual environment within the NPS

firewall as shown in Figure 14. Table 9 lists the various devices used for accessing the

prototype system. There are two ways the prototype system is accessed. The first way is

with a Local Workstation running VMware Horizon View Client software, which creates

a virtual private network (VPN), to connect through the NPS firewall to a virtual Remote

Workstation in the NPS Cloudlab environment. The Remote Workstation is then used to

develop and access the virtual servers of the prototype system. The second way is with a

Mobile Device configured to use NPS’s VPN to connect through the NPS firewall that

then connects to the virtual servers of the prototype system. The Mobile Device is for

accessing the prototype system as the Student user while the Remote Workstation, via the

Local Workstation, is for accessing the prototype system as the Student, Administrator,

or Teacher user.

 25

 26

Figure 14. Prototype system implementation diagram.

Purpose Type Brand Model OS/Version
Local Workstation Desktop Dell XPS 720 Windows 7
Mobile Device Laptop HP Pavilion DV7 Windows 7
Mobile Device Tablet Google Nexus 10 Android 4.4.4
Mobile Device Smartphone HTC HTC One Android 4.1.2

Table 9. The devices used to access the prototype system.

ADL’s implementation of the xAPI standard, version 1.0.0, is used for the

prototype system. The LRS built by ADL was installed as-is; no code modifications were

made to the LRS for this prototype.

An alternative LMS was needed for this study because the AtlasPro LMS used by

NeL could not be obtained within the time constraints of this thesis. Since the data being

moved between the LRS and LMS is SCORM tracking data elements and since SCORM

is the standard the AtlasPro LMS used for storing that data, the assumption is that any

LMS that uses the SCORM standard to store the tracking data elements would be

sufficient to use in place of the AtlasPro LMS. The LMS used for this study is Moodle

version 2.7 and no code modifications were made to it.

The SCORM tracking data elements used in this thesis are for a very simple quiz

of that the score data element is the most important. The sample SCORM package used

for this thesis is the Basic Run-Time Calls, SCORM 2004 3rd Edition, from Rustici

Software’s Scorm.com website: http://scorm.com/wp-content/assets/golf_examples

/PIFS/RuntimeBasicCalls_SCORM20043rdEdition.zip. At the very end of this SCORM

package is a quiz. Figure 15 shows part of that quiz. The correct answers are in bold as

this is a sample quiz. These same quiz questions and answers are used in the prototype

system.

 27

Figure 15. Rustici Software’s Basic Run-Time Calls SCORM package quiz (Rustici

Software).

A. STUDENT USER AND LRS DATA INSERT

The Quiz website that the Student accesses is shown Figure 16 with the screen

shots side-by-side to condense the image. The correct answers are indicated only because

it is a prototype. Once the Student is done filling in the answers they click the Submit

Quiz button.

 28

Figure 16. Quiz website quiz questions.

The Quiz website calculates the Student’s score, builds the LRS statement object,

and then inserts the statement into the LRS. Figure 17 shows the Student’s score being

calculated and Figure 18 shows the LRS statement being assembled and inserted. The

java library used to build the java statement object, create the JSON statement, and then

insert the JSON statement into the LRS is the Experience API Java Library (jxapi) and

can be found here: https://github.com/adlnet/jxapi. The Extension data elements added

for this prototype are converted from a java object into JSON by Google’s JSON java

library (GSON) and can be found here: https://code.google.com/p/google-gson/. The

JSON produce by the GSON library is then used with the jxapi library to produce the

complete JSON statement that is inserted into the LRS.

 29

Figure 17. Quiz website calculating Student score.

 30

Figure 18. Quiz website building and inserting LRS statement.

 31

public static void i nsert St at ement (I nsert FormBean bean) throws Exception {
try {

}

St at ement Client c lient = get CLi ent (bean) ;
St at ement s t at ement = new St at ement () ;
Agent agent = new Agent () ;
agent . set Mbox(bean .get Act onMailbox()) ;
agent . set Name (bean .get Act or Name()) ;
s t at ement . setAct or(agent) ;
s t at ement . set i d(UUI D. r ondomUUI D() . t oSt r i ng()) ;
s t at ement . set Ver b(bean .get Ver b()) ;
Activity a = new Activity() ;
a . set i d(bean .get Activityi d()) ;
s t at ement . set Obj ect (a) ;
ActivityDef i nition ad = new ActivityDef i nition() ;
ad .set Name (new HashMap<St r i ng, St r i ng>()) ;
ad . get Name() . put ("en -US", bean . get ActivityName()) ;
HashMap<St r i ng, Js onEl ement > map = new HashMap<St r i ng, Js onEl ement >() ;
Gson gson = new Gson() ;
Js onEl ement j e = gson . t oJs onTree (new lr sObj ect Oef i nitionExt ens i ons (

bean .get lmsUser i d() ,
bean .get lmsAttempt () ,
bean .get lmsScor e () ,
bean .get lmsCour sei d() ,
bean .get lmsMoodl ei t emi d() ,
bean .get lmsScor mi d() ,
bean .get lmsScor mScoi d()
)) ;

map . put ("http ://nps . edu/xapi/lms" , j e) ;
ad . set Ext ens i ons (map) ;
a . set Oef i nition(ad) ;

gson = new Gson() ;
St r i ng s t at ement Js on = gson . t oJs on(s t at ement) ;
Logger . debug("stat ementJson: " + s t at ement Js on) ;

St r i ng publis hedi d = c lient . publis hSt at ement (s t at ement) ;
Logger . debug("publishedid : " + publis hedi d) ;
}
catch (Pr ot ocol Exception e) {

}

if (e . get Message() . cont a i ns ("Server redirect ed too many")) {
throw new Exception("Probl em connect ing to t he l RS server . Check t hat t he

+ "LRS URL (" + bean .get lr sUr l () + "),

}
else {

throw e ;
}

+ "Aut hor i ty Username (" + bean .get lr sAut hor ityUser name() + "),
+ "and Aut hor i ty Password (" + bean .get lr sAut hor ityPasswor d() + ")
+ "are correct and work on t he l RS server . ", e) ;

In addition to the quiz on the Quiz website, for testing purposes a form was built

that can insert various values into the LRS as shown in Figure 19. Other than the “LRS

URL” field that just points to the LRS location and the “LRS Authority Password” that is

used to connect to the LRS, all the data ends up in the statement in the LRS. The fields

that are prefixed with “LRS” are required values for the LRS statement where as the

fields prefixed with “LMS” are the Extension data elements added specifically for this

prototype. The Extension data elements eventually end up in the LMS after the Data Sync

function is run.

Figure 19. Quiz website testing form for inserting data into LRS.

 32

Figure 20 shows the JSON statement once it is in the LRS. In addition to

installing the ADL LRS, the ADL Experience API Client Examples were installed:

https://github.com/adlnet/experienceapi_client_examples. This included a Report Sample

project that can be used to view the statements in the LRS and is where the image in

Figure 20 was taken from.

Figure 20. JSON statement in the LRS.

 33

B. ADMINISTRATOR USER AND DATA SYNC FUNCTION

Once the Student’s quiz data is in the LRS, the Administrator can access the Data

Sync website as shown in Figure 21. To run the Data Sync function, the Administrator

would click on the “Sync Data from LRS to LMS” button at the very bottom. For testing

purposes, the Data Sync website also can test various aspects of both the LRS and LMS.

One item to note is that the xAPI standard does not provide a way to delete statements

from a LRS. The steps of the Data Sync function are broken out and discussed below.

Figure 21. Data Sync website.

First the data is pulled from the LRS as shown in Figure 22. In Figure 23 the

details of the LRS call is shown. The jxapi library is used for connecting to the LRS to

 34

pull the data. The data is converted by the jxapi from a JSON statement into a java object

statement. By default the LRS will return the last 100 statements with a pointer that can

be used to get the next 100 statements (and so on) if no filter parameters are added. For

the prototype system the LRS data is filtered by the specific quiz (http://nps.edu/moodle/

quiz2) of interest. The assumption is the quiz has only been taken by a single Student so

at this point the list of statements returned are only for the specific quiz and the test

Student. Since the xAPI does not allow deleting of statements from the LRS, after the

first run of the prototype there will always be more than one statement returned by this

filter. Since the statements are returned in chronological order, the first statement

(element 0) of the returned list of statements is the most recent quiz data for the test

Student and that is the data used.

Figure 22. Data Sync function pulling data from LRS.

Figure 23. Data Sync function pulling data from LRS detail.

 35

Second the data is extracted and transformed from the java object statement and

default values are set that are not of interest for this study but required by the Moodle

LMS as shown in Figure 24.

Figure 24. Data Sync function extracting, transforming, and setting default values.

Lastly the data is put into the LMS java objects and inserted into the LMS. The

LMS used in this study is Moodle version 2.7 and it does not provide web services for
 36

altering SCORM related data in the LMS. Because of this, the study reverse engineered

how Moodle handled SCORM data related for a SCORM quiz package within the

database. The discussion below is the result of that reverse engineering to mimic how

Moodle stores the SCORM data in its database.

The first LMS java object populated is the SCO data as shown in Figure 25. For

this prototype, the only value of interest is the quiz score data (cmi.core.score.raw) but

several other values are set as required by the Moodle database. The generic code used to

insert a SCO into the LMS is shown in Figure 26.

Figure 25. Data Sync function SCO Moodle LMS java objects populated.

 37

Figure 26. Data Sync function SCO inserted into Moodle database call.

As part of the Moodle database reverse engineering to have the Student’s grade

show up via the Moodle website for the Teacher, several grade related objects and tables

need to be populated as shown in Figures 27 and Figure 28. (Note: These are not

SCORM related data elements or tables.)

 38

Figure 27. Data Sync function Moodle LMS grade java objects populated.

Figure 28. Data Sync function Moodle grade history java objects populated.

 39

C. TEACHER USER AND LMS VIEW GRADE

For the prototype system two students were created in the Moodle LMS. The first

student (Navy-School User-Student) took the SCORM sample golf quiz within Moodle to

get a score. The second student (test2 user2) took the quiz via the Quiz website. Figure 29

shows Moodle grades before the second student’s quiz grade was copied into Moodle via

the Data Sync function. Figure 30 show the Moodle grades after the Data Sync function

has run.

Figure 29. Teacher viewing the Student’s quiz grade in Moodle LMS before Data

Sync function run.

Figure 30. Teacher viewing the Student’s quiz grade in Moodle LMS after Data

Sync function run.

 40

V. CONCLUSIONS AND FUTURE RESEARCH

A. CONCLUSION

The xAPI along with its LRS can overcome the NeL’s AtlasPro LMS limitation

of only tracking learning from a user’s desktop computer using an Internet browser. It is

possible to track SCORM related data elements in a LRS and then extract that same data

and place it into a LMS. This can enable tracking from much larger pool of devices and

software. Another benefit of using the xAPI is that it separates the tracking of learning

from the delivery of learning content that makes the overall system more modular and

flexible.

There are several areas specific to the prototype system that could be improved

upon. Obtaining and installing the AtlasPro LMS in place of the Moodle LMS would

more closely align the prototype to the NeL production environment. Placing the Quiz

website and Data Sync website each on their own virtual server would better decouple the

components. Having to reverse engineer the Moodle LMS SCORM database interaction

was not ideal and would be better if Moodle provided a web service for SCORM

interactions. Automating the triggering of the Data Sync function would remove the need

for it being manually triggered by the Administrator user.

While the prototype system has the Student Device interact with the LRS via the

Quiz website, it is possible to have the Student Device interact with a LRS directly. The

Student Device doesn’t even have to use an Internet browser for the interaction. This is

because the xAPI works over HTTP. As long as the Student Device has software that can

communicate over HTTP and a network connection to the LRS, then the Student Device

can interact with the LRS. Because of this, the Student Device doesn’t have to be a

desktop, laptop, tablet, or even a smartphone but could any type of computing device

with a network connection such as a hand-held scanner or pilot tactical helmet. It may

even be possible to put the LRS on the computing device itself.

 41

B. FUTURE RESEARCH

The prototype system used only a few of the SCORM standard data elements but

there are many more. It could be beneficial to have a complete mapping of SCORM data

elements from a LRS to a LMS. Is it possible to put every type of SCORM data element

into a LRS? Can those same SCORM data elements then be transferred into a LMS?

HTML5 provides some powerful new features such as local (offline) device

storage, and geographical location of the device, and native (no plug-in) support for

audio, video, interaction, and drawing (MacDonald, 2011). Can HTML5, along with the

xAPI, provide the same features and functionality that training material in the existing

NeL LMS provides? What new features and functionality are possible?

As the prototype system is a proof of concept, it does not take into account many

of the DOD related security concerns. What are the security concerns with the xAPI/

LRS? How can these security concerns be mitigated?

While the xAPI can augment SCORM, the xAPI isn’t limited to just storing

SCORM data elements. What non-SCORM data elements would be useful to track and

store in a LRS?

There is no requirement that the computing device must connect to the LRS over

a network connection. It may be possible to put the LRS on the computing device itself

that may be beneficial in certain situations. Can a LRS be installed directly on the

computing device that is going to communicate with the LRS? If so, what possibilities

does this open up?

These are just a few directions the research could be taken.

 42

APPENDIX. XAPI/LRS STATEMENT IN JSON FORMAT

{
 "id": "f7c4fe63-c314-4525-883a-407f2fe06dd4",
 "verb": {
 "id": "http://adlnet.gov/expapi/verbs/completed",
 "display": {
 "en-US": "completed"
 }
 },
 "actor": {
 "mbox": "mailto:navyschooluser@gmail.com",
 "name": "NavySchoolUser",
 "objectType": "Agent"
 },
 "object": {
 "definition": {
 "extensions": {
 "http://nps.edu/xapi/lms": {
 "attempt": "1",
 "courseId": "2",
 "userId": "4",
 "moodleItemId": "2",
 "score": "95",
 "scormId": "1",
 "scormScoId": "2"
 }
 },
 "name": {
 "en-US": "Quiz 2"
 }
 },
 "id": "http://nps.edu/moodle/quiz2",
 "objectType": "Activity"
 },
 "authority": {
 "mbox": "mailto:wemiller@nps.edu",
 "name": "Rett Miller",
 "objectType": "Agent"
 },
 "timestamp": "2014-11-02T21:43:51.227355+00:00",
 "stored": "2014-11-02T21:43:51.227355+00:00",
 "version": "1.0.0"
}

 43

THIS PAGE INTENTIONALLY LEFT BLANK

 44

LIST OF REFERENCES

Advanced Distributed Learning. (2013). Background and history. Retrieved September
13, 2014, from Advanced Distributed Learning: http://www.adlnet.gov/tla/
experience-api/background-and-history/

Advanced Distributed Learning. (2014, May 28). Experience API. Retrieved June 1,
2014, from GitHub: https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md

Advanced Distributed Learning. (n.d.). Training & learning architecture (TLA): Project
Tin Can. Retrieved September 13, 2014, from Advanced Distributed Learning:
http://www.adlnet.gov/tla/tin-can/#tab-research

Berking, P., & Gallagher, S. (2013, May 14). Retrieved September 20, 2014, from
Advanced Distributed Learning: http://www.adlnet.gov/wp-content/uploads/2013/
05/Choosing_an_LMS.pdf

Bray, T. (2014, March). The javascript object notation (JSON) data interchange format.
Retrieved October 26, 2014, from Internet Engineering Task Force:
http://tools.ietf.org/html/rfc7159

Brusino, J. (2012, June 1). The next generation of SCORM: A Q&A with Aaron Silvers.
Retrieved November 3, 2013, from astd.org: http://www.astd.org/Publications/
Newsletters/Learning-Circuits/Learning-Circuits-Archives/2012/06/The-Next-
Generation-of-SCORM-a-Q-and-a-with-Aaron-Silvers

Experience API. (2014, January 2). Advanced Distributed Learning (ADL) co-
laboratories. Retrieved January 20, 2014, from GitHub: https://github.com/adlnet/
xAPI-Spec/blob/master/xAPI.md

Hyland Software. (2009, Febuary 18). The trouble with legacy systems. Retrieved August
16, 2014, from OnBase: https://www.onbase.com/~/media/Files/Hyland/
WhitePaper/wp_trouble-with-legacy-systems.ashx

MacDonald, M. (2011). HTML5: The missing manual. Sebastopol : O’Reilly Media, Inc.

Mobify. (2012, October 25). Working with iframes. Retrieved August 23, 2014, from
Mobify: https://support.mobify.com/customer/portal/articles/547042-working-
with-iframes

Navy eLearning. (2010). Retrieved November 3, 2013, from MilitarySpot.com:
http://www.militaryspot.com/navy/navy-elearning-nel/

 45

Poltrack, J., Haag, J., Hruska, N., & Johnson, A. (2012). The next generation of SCORM:
Innovation for the global force. Retrieved November 16, 2013, from Advanced
Distributed Learning: http://www.adlnet.gov/wp-content/uploads/2012/12/
12114.pdf

Rustici Software. (n.d.). Golf examples. Retrieved February 7, 2014, from Rustici
Software: http://scorm.com/scorm-explained/technical-scorm/golf-examples/

Rustici, M. (2009, January 12). SCORM 2004 overview for developers. Retrieved
October 26, 2014, from Rustici Software: http://scorm.com/scorm-explained/
technical-scorm/scorm-2004-overview-for-developers/

Sea Warrior Program and Naval Education and Training Command Public Affairs. (2013,
February 22). New learning management system improves navy e-learning
efficiency. Retrieved November 3, 2013, from Navy.mil: http://www.navy.mil/
submit/display.asp?story_id=72301

Szabo, M., & Flesher, K. (2002). CMI Theory and Practice: Historical Roots of Learning
Management Systems. World conference on e-learning in corporate, government,
healthcare, and higher education (pp. 929–936). Montreal: Association for the
Advancement of Computing in Education.

Tin Can API. (n.d.). SCORM vs the tin can API. Retrieved September 13, 2014, from Tin
Can API: http://tincanapi.com/scorm-vs-the-tin-can-api/

Whitaker, A. (2012, July 19). An introduction to the tin can API. Retrieved November 3,
2013, from The Training Business: http://www.thetrainingbusiness.com/
softwaretools/tin-can-api/

 46

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

 47

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Thesis Objective
	B. Thesis Outline

	II. Background
	III. Prototype System Design
	A. Stakeholders
	B. Use Cases
	C. Components
	D. Architecture
	E. Sequence Diagrams
	1. Student User Quiz Submission
	2. Administrator User Data Sync
	3. Teacher User View Grade

	F. Class Diagrams
	G. XAPI/LRS Extensions

	IV. Prototype System Implementation
	A. Student User and LRS Data Insert
	B. Administrator User and Data Sync Function
	C. Teacher User and LMS View Grade

	V. Conclusions and Future Research
	A. Conclusion
	B. Future Research

	Appendix. xAPI/LRS Statement in JSON format
	List of References
	Initial Distribution List

